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What’s Our Plan?

e Lecture |

e Birth of Neutrino Physics
e Some Basics of the Weak Interaction

e Neutrinos as a Probe of Matter

o |_ecture |l

e Early Experimental History — Big Challenges and Bigger Surprises
e Neutrino Oscillations, Masses and Mixing

e Open Questions in the Neutrino Sector

General Goal: To provide you an introduction to the
basic vocabulary and concepts needed to understand

current efforts and future results in neutrino physics
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Two Types of Weak Interactions

W+ exchange constitutes a “charged-current” interaction

Z0% exchange constitutes a “neutral-current” interaction

Charged-Current (CC) Neutral-Current (NC)

Can detect neutrinos through their CC and NC interactions
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Let’s Give it a Try: v, from the Su

* Nuclear reactions in the sun produce electron neutrinos ONLY
e |f can detect them, can test the model of the sun
e Look deep into the sun using neutrinos!
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Let’s Give it a Try: v, from the Su

e Ray Davis set out to detect v, from
the sun using a tank of cleaning
fluid buried deep underground

v,+'Cl = Ar+e”

e Every once in a while Davis would
extract and count the number of
argon atoms in the tank

e John Bahcall had calculated how
many to expect:

~ kAl Homestake Mine,
36 Ar atoms/month MR /.. South Dakou
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Let’s Give it a Try: v, from the Sun

o Ray Davis set out to detect v, from
the sun using a tank of cleaning

0

SNU _

fluid buried deep underground I s s S
Ve +37Cl —> 37AI” + e_ 6 ! % . 1 # ©

e Every once in a while Davis would | * N ’ } H ¢ M .
extract and count the number of % * i IO ‘{ +
argon atoms in the tank H L (8] M 4 l }

e John Bahcall had calculated how
many to expect: ¢, (Homestake)

qu (Theory) =0.34 +0.06

~ 36 Ar atoms/month -
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Let’s Give it a Try: v, from the Sun

What could possibly explain this?

The theory was wrong
The experiment was wrong
They were both wrong
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Let’s Give it a Try: v, from the Sun

What could possibly explain this?

The theory was wrong
The experiment was wrong
They were both wrong

But what if neither was wrong?

Would imply ~2/3 of the solar v, flux
“disappears” on the way to earth!
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A Definitive Solar Neutrino Result

* Major drawback of Davis’ experiment was could only see electron
neutrino interactions. The Sudbury Neutrino Observatory (SNO)

could see interactions involving all three flavors (v, v,, v,)

V,+d—=p+p+e (CC) «—— CC interactions sample ., only
v.+d—=p+n+v, (NC) </ NC interactions sample total
(I)Ve T (I)\/M T (I)V’C

vV.+e =V _+e (ES)
P, v, fraction
=(0.340 £ 0.023(stat) = 0.030(syst) © .
o, +¢, +¢, agrees with
I Davis!

(494 +0.21+0.36) x 10°cm™s™"

SNO ¢ve +¢Vu +¢vr

Theory: o =(569=091)x10°cm™s™ Total flux agrees

with Bahcall!
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Try Again: v, /v, from Atmosphere

e Neutrinos created by decay of
pions in particle showers
initiated when energetic cosmic
rays interact in the atmosphere

b,
Expect: L=

A%

INFN-Notizie NI giugno 1999
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Try Again: v, /v, from Atmosphere

Super-Kamiokande
S50kT water Cherenkov detector

Originally built to
search for proton
decay. Still waiting
for one of those,
but won a Nobel
Prize for study of
atmospheric
neutrinos in the

mean time.
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Try Again: v, /v, from At

¢v

Expect Ry}

' - 1 ' I

. multi-GeV mu-like (FC+PC)~

multl-GeV e-llke
]50 — — -
| Ve \ Vu
N

100 |- 4 L +

so b _+_ B e Data _
[] Predicted
— OUMU-NULau 0sc,

0 ™ 1 ™ 2 1 . 1

-1 -06 -02 02 06
cos(zenith angle)
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cos(zenith angle) d o
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Another “Desperate Remedy”

Where are the disappearing neutrinos
disappearing to? Another dilema that
persisted for more than two decades!'

It was realized that if neutrinos indeed have small non-zero
masses, then quantum mechanics allows that they could be
disappearing into other kinds of neutrinos...

* v, fromthe sun > v /v,

e v, from atmosphere = v,

and tiny masses can have H U G E effects
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What is Neutrino Flavor?

«,

V

0.

The neutrino of flavor o is
the one created in W boson
decay together with the
charged lepton of flavor o
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What is Neutrino Flavor?

The neutrino of flavor Ot is And which creates a charged
the one created in W boson lepton of flavor o0 when it
decay together with the undergoes a charged—current
charged lepton of flavor o interaction
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What is Neutrino Flavor Change?

L, e Lo,
4—>/
Vv, Vv,
L, Xﬁ
P
o B

Which could be possible if
neutrinos have mass and leptons mix
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Flavor == Mass

* We know the initial weak flavor, v, = (v,, Vi Vo ...) through
identification of the charged lepton partner £, = (e, u, T, ...) when
the neutrino is created

» But suppose that weak flavor eigenstate is actually a superposition
of pure mass eigenstates

Mixing matrix describing mass

g + state content of flavor states
(04
W+ l
U
o ail "1
Va
Neutrinos of Neutrinos of
definite flavor definite mass
JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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Flavor == Mass

/Ve\ (Uel UeZ Ue3\ /Vl\

\L

flavor states ———»
participating in VvV

I
-
-

1 2
standard weak “ “ “

interactions \VT / K U 1 U 2 U 73 ) \V3 /
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Flavor == Mass

v

flavor states ———»

1 0 0)

h Dave Schmitz, Fermilab

v

participating in VM =
standard weak
interactions \VT /

(v,

\L Leptonic Mixing Matrix
(
/Uel Ue2 Ue3\ Vl\
Uul UMZ Uu3 V2
€ neutrino
K Url UT 2 UT 3 ) \V3/ mass states

v\ (058 058 0.58\v,)

v, =10 1 0Ofwv, v,|=1058 0.58 0.58(v,
v, \0 0 1jv,) \v,] 1038 0.58 0.58)\v;,
mass eigenstates == flavor eigenstates flavor eigenstates = equal mix of mass states

CTEQ Summer School — July , 2011
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Flavor == Mass

e And a neutrino’s propagation through space (from production to
detection) is dictated by the free Hamiltonian whose eigenstates are
the states of definite mass, v, = (v4, v,, v3, ...), not flavor, and
whose time evolution is described by the Schrodinger equation:

Lg

v, Vg
() = Efv(0) = [ B+ v ()
ot' ' A C2E )

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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The Oscillation Formula

e The trivial solution to this Schrodinger equation tells us how the
v. propagate in time:

‘Vi(t)> _ e_i(Ei +ml-2 /2F; )I‘Vl. (O)>

e The mass eigenstates which contribute coherently to an experimental
beam are those with a common energy, E

e Since neutrino is ultra-relativistic, L = t (forc = 1)

‘Va> g ‘V(L)> = EU;e—i(miz/zE)L

at production point after traveling a distance L

h Dave Schmitz, Fermilab CTEQ Summer School — July , 2011
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The Oscillation Formula

» The probability that a neutrino created as weak eigenstate o being

detected as weak eigenstate 3 after traveling a distance L is:

2
P(va — vg) = |(vslv (L)))? Z Uz e~ miL2B)

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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The Oscillation Formula

» The probability that a neutrino created as weak eigenstate o being

detected as weak eigenstate 3 after traveling a distance L is:

2

P(va — vg) = |(vslv (L)))? e HmiL2E) g,

L

1>]

L
2
+ 2 E S UngzUajUﬁj) sin (Amm 2E)

1>7

mass—squared difference

] j [ of two mass eigenstates
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The Oscillation Formula

. The periodic nature of the oscillation probability formula (sin?wx)
has earned the phenomenon the name “neutrino oscillations”.

. If neutrinos do not have masses so that all Am? = 0, then the
probability reduces to 95, and neutrinos cannot change flavor
through oscillations. On the other hand, if neutrinos are found to
oscillate, then one or more neutrino masses are necessarily
non-zero and not identical.

. If the mixing matrix is diagonal, such that eigenstates do not mix,
then again the probability reduces to 3, oscillations =» mixing

. To determine the oscillation probability of antineutrinos, one must
change the sign of the third term to (-). Because antineutrino
transmutation is the CP mirror image of neutrino transmutation,
evidence that P(v, = v;) * P(v, = v;) would be evidence of

CP violation in the lepton sector.

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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The Mixing Matrix

participating in
standard weak

interactions

<
I

* Dave Schmitz, Fermilab

flavor states ———»

s
—812C 23 — C12853515€

id
\Vo /) \ S12823 = C1aC03515€

v
/Ve\ (Uel Ue2 Ue3\

vV

I
-

u ul u3

\Vr / KU’L’I Ur2 Ur3 )

v,

\L

\V3)

C1rC3 512€C13

3 mixing angles and 1 CP violation phase

s
C12Co3 = 81283815€ $23C13 || V>

i
—C1283 ~ 812C23513€ C»Ci3 )\V3)

Leptonic Mixing Matrix

€ neutrino

mass states

By analogy with CKM matrix for quark mixing:

c,; =cosl, s, =sinb;

CTEQ Summer School — July , 2011
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Verifying the Oscillation Explanation

Recall, we laid out the oscillation scenario with neutrino masses
and mixings as an explanation for the solar and atmospheric
neutrino puzzles:

e WWhat happened to all the v, from the sun?

» What happened to the v, created in the atmosphere which
traveled through the earth?

If this is the correct explanation, then
we should be able to construct a set of
laboratory experiments to test it and
make precision measurements

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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The Mixing Matrix

flavor states ———»
participating in
standard weak

interactions

Very instructive to factorize matrix that we wrote down before:

v\

Vi

\Vz )

v

v,

\L

\V3)

Leptonic Mixing Matrix

€ neutrino

mass states

v 1 0

v, |=[0 cos0O,;,

0

sin0,,

(Uel UeZ Ue3 \
Uul UMZ UM3
KUrl UrZ Ur3 )
cos6,, 0 sinf,e”
0 1 0

. . —id
Vv, 0 -sinf,, cosO, A -sinb ,e 0 cos6,

i0

cos6, sinf, O} v,

sinf,, cosf, O]v,
0 0 1 \v,

factor responsible for

atmospheric neutrino

anomaly (Am,;?,0,;)

* Dave Schmitz, Fermilab

Quasi
2-neutrino
mixing
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T

* Dave Schmitz, Fermilab

Am? determines the

shape of the oscillation

as a function of L (or E)

CTEQ Summer School — July , 2011
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—— = K LT
s P(va vﬁ) sin” 26, #sin”| 1.27Am
9 /
Vﬁ
- > V4 The mixing angle, 0,
determines the amplitude
of the oscillation
\ J
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Two Neutrino Mixing

. 2 e 2 2 1
P(Va %vﬁ) =sin" 260, #sin"| 1.27Am;; Fixed E
j if ,
Variable L
- 2oy
2> e AL=nE/(1.27Am?) >
e
o
L
O
a
Isinz 218 A bunch of detectors
0 _ to measure V,, / Vg
Distance from v source (L) content along path
Wouldn’t that be
Begin with r
' awesome!!
mono—energetlc 1
beam of v, Alas...
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Two Neutrino Mixing

P(va

—v, ) =sin’ 20, #sin’|1.27Am

Fixed L
Variable E

CC Events/GeV/3.8x10°°POT/kt

o © © o o o o
o o o o
N~ OO
T T T

©
o
S

10°

[N
»

Beam MC —LE
i ~ME
—HE

N
N

-
o
T

0.2

Energy (GeV)

L . :
0 2 4 6 8 10 12 14 16 18 20

'35 Km
1 Z__
C > Al vu's have
0.8 - n
0.6 -
0.4 -

oo e by by g

become v 's

6§ 7 8 9 10
Neutrino Energy E (GeV)

Begin with broad

energy spectrum

beam of v,

JC

Measure v, / Vg

energy Spectrum at

origin and again after

traveling distance L
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Building a Neutrino Bea

impinge upon a

fixed metal target

—

protons delivered
by the accelerator

* Dave Schmitz, Fermilab

E

This is the basic concept first
invented by Schwartz, Lederman
and Steinberger when they
discovered the Vv, in 1962

pions decay into

muon neutrinos

S ————
| .

...which are focused (defocused) reversing current

by a strong magnetic field created creates antineutrino

by a “focusing horn” beam
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The NuMI Beamline at Fermilab
- | I | | L
45F v, Spectrum = Beamline of the MINOS and
= v, Spectrum 3 .
40E Neutrino mode 3 MINERVA experiments
2(5): Horns focus n+, K+ E
%) 252— Vll: 91.7% —i
o 20 V 7.0% 3 / electron neutrinos from kaon and muon decays
> 15F " ' A
L = N7 . 0 3
10E V. tv,: 1.3% © 3
5 £
: , , e
% 5 015 20 %5 80 45 v, Spectrum
rue (O€ - - j
40F Antineutrino mode V: SPectt™
35 Horns focus n-, K
8 30 —
0o
c . .
g) 25 Vu 39.9%
B o
“wrong sign” contamination much worse in w20 vp' 58.1%
. . . . ] 15 —
antineutrino mode due to differences in 7" /7 0 ve+ve . 2.0%
spectra off target and neutrino/antineutrino
P 8 T 5
Cross sections ; : e
% 15 20 25 _ 30
Eye (GeV)
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The MINOS Experiment

2 3> Ely, MN/ &
ector) . "/Y“”‘“ o
. Vo

1k ton near detector 5 kton far detector
at Fermilab at Soudan, MN

2000 ft




The MINOS Experiment

(E)ymos = 3 GeV
(L), ~T35 km

for sin®(x) ~1

35 k
A =1 /] 1275 22K 107 ev?
3GeV

1k ton near detector 5 kton far detector
at Fermilab at Soudan, MN




The MINOS Experiment

- 1 ] w15 T

B MINOS Far Detector CC) i T
>300|_— —4— Fardetectordata -'C_E | i
[ [ No oscillations ] — - g

B | C_) 1 =
(D | Best oscillation fit ] ) + :
~200- [ ] NC background — @) 5 T |
42 i ] o | .

B i cC - .
) | ] — |
=1 00 S 05_ —4— Far detector data |
LI i + 1 @) - Best oscillation fit i

N i -.(__U, = Stats. only decay fit J

L B Stats. only decoherence fit

O ' ' — oC o y. AR

b 2 4 6 8 10 Y2 "% & 10
Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV)

uenmgLivo EueLdA E (@A)

P(v,>v) L=735Km [( SIS SN S R SN - T T R
ks \ “Allv,'s have become v.'s
L ' 0's
O.B—W
ol P(VM > Vr) MINOS measures o P(VM eVM)
[ the disappearance o
b ool =1-P(v, —v,)
of muon neutrinos - U u T
0’8

o.zb

0 L S S B 4 S s
Neutrino Energy E (GeV)

| A"",2 pone pecowse A2

b(r" -> A%) = \32 KW
- r 32 K
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The KamLAND Experiment

<E>KamLAND = 5 MeV
~ 180 km

<L>KamLAND
for sin®(x)~1

180 km

Am* =1/|1.27% ~107eV?

0.005 GeV

o Data-BG-GeoV,
) - — Expectation based on osci. parameters
Phys. Rev. Lefit. 100, 221803 (2008) I determined by KamLAND
E P — . —— KamLAND data > K +
B P e no oscillation = =
250:_ T best-fit osci. 'g 0.8 o -
> N : I accidental e B
< 200 PCloun)'°0 = 0.6 e
- E ‘ 7y, best-fit Geo V, & O =1
9 - T = bestfit osci. + BG S - <+ [
2 150 ; + best-fit Geo V, S - T
2] r 3 -t & TV ==Re--- 3_—: 0.4 [
= - 7 N
C 0.2
S0E e W N
: ..... O_IIIIlIIIIIIIIIIIIIlIlIIlIIIlIlIIlIlIIlIIIIIlI
20 30 40 50 60 70 80 90 100
E, (MeV) LO/EV (km/MeV)
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Presenting Oscillation Results

IAm?| (107 eV?)

JC

23
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= = MINOS 68%
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IIII|IIIIIIIII|IIII 3 2 "|-v1[

20F - .
S L) DY S $ 40 ..
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| SR ORI S 20...
A AP lo
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] KamLAND LE"&’&& g 1§
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Y e
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o 107 N -
- > <y 8
“'EN ., : »:,, *eadecasadad
{ < e
— s o
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’ best fit o
TP PPY O L Y Y
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0.85 0.90

sin22§29)
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0.95

SuperK atmospheric data + MINOS

10! I
tan26l >

Solar data + KamLAND

1.00

CTEQ Summer School — July , 2011

10 20 30 40
Ay?

E

37




e “Atmospheric’ Osc. Parameters

Am;, =2.51x107eV?  (x4.8%)
0, =423 (+12.5%)

e “Solar’ Osc. Parameters

Am}, =7.59x107eV?  (£2.6%)
0, =344 (+2.9%)
e Other Osc. Parameters
0, <94° (lo)
O-» unknown
(08 06 <0.1)
UMNS ~104 06 0.7

04 06 07

* parameter values from global fits to data, hep-ph 1001.4524

* Dave Schmitz, Fermilab

Neutrino Mass and Mixing Summary

(M) ——— I \

2 2 2
’U(’3‘ ‘Uﬂ»“ ’Ur.?

= Ve Vu L] Ve
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Neutrino Mass and Mixing Summary

e “Atmospheric’ Osc. Parameters

_ A2
Ami, =251x107eV?  (x4.8%)

’U ’ ‘ ‘ ’Ur3
6,, (+12.5%) /"

e “Solar’ Osc. Parameters

Am? =759 x107eV?  (22.6%) Am?;
0,, =344 (+2.9%)

e Other Osc. Parameters

6, @ (1o) ’Uez‘z ‘Uuz‘z ‘Urf!’:
S @ (m,) +— V5

(08 0.6 <0.1)  (m)y —|———————
! ‘Uc-1|_ |U.ul’h Ur12
U ~04 06 07 ro
04 06 07, v
* parameter values from global fits to data, hep-ph 1001.4524 = Ve [] Vu [] Ve
T Schmitz, Fermilab CTEQ Summer School — July , 2011
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Still Many Open Questions

What is the absolute mass scale of the neutrinos?

What is the mass mechanism for neutrinos? Dirac vs. Majorana
particles. Are neutrinos their own antiparticles?

Are there additional neutrino states, or only three?
Why is neutrino mixing so different from quark mixing?
Is 6,3 maximal?

What is 0,;? Why is it so small?

Is there CP violation in the neutrino sector (what is §)?

What is the hierarchy of the neutrino masses (sign of Am,;?)?

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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Still Many Open Questions

JC

What is the absolute mass scale of the neutrinos?

Best known laboratory method is to look at

endpoint of electron energy spectrum in tritium decay

%} 1 O - a) ',"," b)
: ,'r
% /0.8
g 0.8 ';'
> S, 0.6
g 06 /&
S / 5
q>) / E_J 04 I
< 04 [ -
K [ only 2 x 107" of all
q'-) 0.2 - decays in last 1 eV
0.2 [ m(ve)=1eV ‘
O v
0 l . l b 3 -2 1 0
2 6 10 14 18
E-E;le
electron energy E [keV] o [eV]
Dave Schmitz, Fermilab CTEQ Summer School — July , 2011
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Still Many Open Questions

What is the absolute mass scale of the neutrinos?

KATRIN'’s goal is to reach 250 meV sensitivity

; P — '

-~

Leépoldsl‘]afen 5.1 06 R

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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Still Many Open Questions
What is the mass mechanism for neutrinos? Dirac vs. Majorana
particles. Are neutrinos their own antiparticles?
Strategy is to search for neutrlnoless double beta decay
e e
< c><\/\/\./\/\/ >
A\ W
= -
Many experiments: g - 0y
CUORE ("3Te) '
GERDA (7°Ge)
NEMO (1Mo, 8%Se)
00 o5 - ToE/Q
JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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Still Many Open Questions

What is the absolute mass scale of the neutrinos?

What is the mass mechanism for neutrinos? Dirac vs. Majorana
particles. Are neutrinos their own antiparticles?

Are there additional neutrino states, or only three?
Why is neutrino mixing so different from quark mixing?

ﬂ

accessible > Is 623 maximal?

through \>
oscillations What is 6,,? Why is it so small?

\
\ Is there CP violation in the neutrino sector (what is §)?

What is the hierarchy of the neutrino masses (sign of Am,;?)?

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011
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Still Many Open Questions

Uqey ~10.2
\ 0

* Dave Schmitz, Fermilab

Quarks

(1 02 0

Neutrinos

08 06 <0.1
Uy ~|04 06 0.7
04 06 07

0
1

A
m? (e\V?)

Normal hierarchy Inverted hierarchy

A \'3 \"2 —_ﬂ_ (m2)2
Amz1 2

2 V, I ——— (M, )2
- 2 1 A 1
U,;| =smn (813)
Am223
Am2‘|3
— e V
A 5 )
Am 12
—Y — r—— 1 —1—
A ¥y V3 (M)’
| |
i i
: m2|ightest m2|ightes1 :
Y Y

mv.e BV, BV,

CTEQ Summer School — July , 2011

Key to accessing the mass hierarchy and CP violation is
v, = v, oscillations at the atmospheric (Am,,”) mass splitting
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0.5 Is the Gate Keeper

P(v,~v,)=sin’26,,T, - asin26,,T, - asin26,,T; + a’T,

Am?s
a —

~Am
sin’[(1-x)A]

T, =sin” 6., (I-x)

sin(xA) sin[(1 - x)A]

X (1-x)

sin(xA) sin[(1 - x)A]
X (1-x)

CP Violating terms

T, =sindp sin 26,, sin 26,, sin A

T, =cosdp sin 26,, sin 260 ; cos A

)

: sin”(xA

T, = cos’ 0,,sin” 26, #
X

_Awal_2V2G.NLE,
4Ev Am231

Matter Effects

A

Is there CP violation in the neutrino sector?

What is the mass hierarchy?
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6.5 from v, Disappearance

e 0,5 can be directly probed through v, disappearance at the right L/E

* Note, no sensitivity to mass hierarchy or CP violation

1

Atmospheric L/E
- 4

JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011

E

—
P
o 0.5
> i ) full P(v,—v,)
o I ,
i . y | Sollar L/E
10" / 1 10
Reactor based v_ disappearance expts L/E (km/MeV) K 1 AND
such as Double Chooz and Daya Bay arm
PV, »V,)=1-sin’26,,- sin’(1.27- Am’»- L/E) PV, »¥,)~1-sin’20,,- sin’(1.27- Am’>- L/E)
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v, Disappearance vs. v, Appearance

SuperK / MINOS v, disappearance mostly due to v, = v,

T

multi-GeV mu-like (FC+PC)

Iy

.
multi-GeV e-like
No noticeable Ve | [ Vu
excess of V_ 1L
in upward
direction in . 1
SuperK - m “P‘
atmospheric data | "
-1 -Iflr- -0.2 02 ~l; ,‘,T
cos(zenith angle) U p

* Dave Schmitz, Fermilab
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« Data

[—] Predicted

numu—-nNuau osc

T v

—
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v, Disappearance vs. v, Appearance

1T

0.5¢

\"’ 3
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v, Disappearance vs. v, Appearance
1 = 1E
3 P(v, 2 v,)
0.5 ] 0.5
0Ly 0] S ——— |
Neutrmo Energy (Ge V) Neutrino Energy (GeV)
ZOEM IN
0,5 |
0.06}
{/ P(v, 2 v,)
T C
0 e
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Long Baseline v, Appearance Searches

» MINQOS detectors not optimized for electron detection, but have
collected lots of data (8.2e20 POT)

 T2K uses Super Kamiokande detector with excellent electron
reconstruction, but just started data collection (1.4e20 POT)

CTEQ Summer School — July , 2011
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Long Baseline v, Appearance Searches

» MINQOS detectors not optimized for electron detection, but have
collected lots of data (8.2e20 POT)

 T2K uses Super Kamiokande detector with excellent electron
reconstruction, but just started data collection (1.4e20 POT)

40

[ 1 T "~ T 7 1 ] — —4— Dat
" Far Detector Prediction (LEM > 0.7) ‘ > < — O:ca.ve ce
- MINOS PRELIMINARY = Sjgnal s 3 v+, CC
E 30— —— Background | § NQCCC
L ! — FD Data = 7
e T ’
& T $in%(20,,)=0.040, AmZ,>0, 5.,=0 | ‘3 2 7 T2K
o 20 ] e I |
E = Merged for Fit - o | n;
= < > ° I {
I ' - q1F 3
w 10} Q I
L . 0
| + i
F 1 = LA
o 1 1 : ! L Z 0 AN (i e
1 2 R 3 ¢ 4t dE 5 GGV 7 8 0 1000 2000 3000
econstructed Energy (GeV) Reconstructed v energy (MeV)
N, expected: 495 = 2.8(Syst) + 7.0(stat) N, expected: 1.5+ O.3(syst)
N, observed: 62 N, observed: 6
JC Dave Schmitz, Fermilab CTEQ Summer School — July, 2011 52

E




—————— T n 1
] Value of 0 X )
AM?> 0 ] 13 L Am3;>0 -
: . depends on w kb h
: = MINOS Best Fit - _ C i
1 . i mass hierarchy I i
5; : [l 90% cL - and Op aoﬁ ob B
S : ***' CHOOZ 90% CL . C ]
: 2sin%0,,=1 for CHOOZ i B = Best fit to T2K data
® - o 68% CL h
- W2 L B 90% CL i
- A hint at [ . . i
\ 1 -1
——— - non-zero 913 x et
2 ] from T2K! ] .
Am° <0 : rom ! \TA AmZ, <0 -
- w2 E
& : : i
S " @6 U ]
w0 8.2x10° POT | i )
_ a2 - T2K ]
MINOS ] 1.43)(1020 p.o.t. i
PRELIMINARY i
0.1 O B ¥ — 0 01 02 03 04 05 06
- .2 .
2sin’(20,5)sin’6, sm72613
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Future Long Baseline Experimer

29,
Near
Detector

1sconsin

Deep Underground Science
DUSE and Engineering Laboratory @t Homestake, SD

Biology ‘ Image € 2008 TerraMetrics} :
©2008Europa Technologies
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Long Baseline Neutrino Experiment

JC

Baseline designs involve 100 kton water Cherenkov detector(s)
AND/OR 17 kton liquid argon TPC neutrino detectors(s)

Long Baseline v Physics
0,3, Mass Hierarchy, and CP violation
Osc. parameters precision measurements

Proton Decay
Supernova Burst/Relic neutrinos
Atmospheric/Solar/UHE neutrinos

neutrino

physicists
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Long Baseline Neutrino Experiment (LBNE)

Comparison

between neutrino

and antineutrino

oscillations is the
key to extracting
mass hierarchy

and CP violation

P(v,—v,)
VS.
P(v, —v,)

* Dave Schmitz, Fermilab
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Events/0.25 GeV
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©1001" hormal hierarch
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E 80[~ —— Signal+Bkgd,d,, = 90°
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w
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~—— Signal+Bkgd,,, = -90°
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All Bkgd
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20 hierarchy
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Neutrino Energy (GeV)

50" normal hierarchy
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i ~——— Signal+Bkgd5,,, = 90°
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1 2 3 4 5 6 7 8
Neutrino Energy (GeV)
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—
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inverted
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[ sin%(20,)) = 0.04 —— Signal+Bkgd,o;, =0

——— Signal+Bkgd,5,,, = 90°

- Signal+Bkgd,5, = -90°

i

SRS

Neutrino Energy (GeV)

E

56




Long Baseline Neutrino Experiment (LBNE)

JC

-3 -2 1
@ 100_ T T LI I1lol T T 10 12
< - — Normal E
g 90E ...... Inverted -
g sof— 643(30) =
R MH (30) 3
w - — CPV (30) ;
60 3
50 _ -
- Syrsv+5yrsv 3
40~ 700 kW =
30F- 200 kton WC _;
20F- E
10F- E
0: AT L N 4 N t

10° 10

10
sin2(2613

Right of red curve are values of 0, and sin?(20 ;) for which LBNE can resolve non-zero 0,5 at 30

Right of green curve are values of 9, and sin?(20 ;) for which LBNE can establish CP violation at 30
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Summary Il

e Neutrino mass and mixing has been firmly established as the solution to
the solar and atmospheric neutrino puzzles

 However, still many open questions yet to answer:

What is the absolute mass scale of the neutrinos? <\ Heaviest one heavier

2
What is the mass mechanism for neutrinos? Dirac vs. Majorana than y/Am, ~ 50 meV
particles. Are neutrinos their own antiparticles?

Are there additional neutrino states, or only three? «— LSND and MiniBooNE
Why is neutrino mixing so different from quark mixing?
/
accessible » 186, maximal? Could the leptons hold the
through P
oscillations > Whatis 0,,? Why is it so small? key to understanding the

\ / matter dominated

~Is there CP violation in the neutrino sector (what is 3)? _
\ universe?

What is the hierarchy of the neutrino masses (sign of Am,;%)?

e Plus the unknown unknowns. Neutrinos have a reputation for surprises
requiring “desperate remedies”!
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MINOS V,, running

IIIT

l 1 1
| — MINOS v, 90%

--MINOS Vv, 68%
® BestV Fit

llllllll

_®

- Global Fit 90%
[— MINOS v, 90%

2

1 71 X 1020 POT v, mode

Illll-

05 06 07 08 09
sin®(26) and sin*(20)

Global fit from Gonzalez-Garcia & Maltoni,
Phys. Rept. 460 (2008), SK data dominates

MINOS Antineutrinos
Expect 156 events with no oscillations
Observe 97 events o
» No oscillations disfavoured at 6.3¢ N>
Best fit to oscillations: ()
|Am?| = (3.3610 95 (stat.) = 0.06(syst.)) x 1073 eV? <*>o
sin?(20) = 0.861 015 (stat.) £ 0.01(syst.) —
-
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30 | -+ MINOS data
— No oscillations ©
- —2_ 3072 «irnl(OE\=1 ] -
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P(v) / P(v) Asymmetry

JC
R

|IP-P|/|P+P|

Neutrino—AntiNeutrino Asymmetry

1.0 1 ] lllllll I I lllllll. 1
0.8 S
: :8 |
[ § % ]
| A ;é i
0.4}—2" LN
_/_o/; :Lo i
7§ b2 Nt
. N .
025 ém3, = 7.0 x 10™° eV® ~ SN
- 8. e TR
- % ém5, = 2.5 x 1072 eV? T~ 4
0.0 1'1111111 1 1111111| 1 1111111" L
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. Parke .2
( ) sin“260 4
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(ignoring matter effects & backgrounds for now)

* the asymmetry
P(V_u Vo) — P(‘*”_u

P(v,>Ve) T+ P(v“

Ve)
Ve)

is proportional to ~1 /sinB]3

u

* the asymmetry gets
smaller as 0,, increases

~75% for 511’1229w 3=0.01

g)f‘D:J.
~25% for sin?20,,=0.10 Ocp=11/2

factor ~3 reduction in CP asymmetry
(independent of baseline)

- signal rate increases w/ 0,

factor ~10 increase from 0.01 to 0.1
so x3 improvement in stat sig of signal
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(L. Whitehead) 200 kton WC
g SO T T rr 1111 eqsq result, the error on
g - Normal Hierarchy - !
. 5yrsv+5yrsv ] the CP asymmetry and thus
8 o ‘ -
S 1 how well can measure O
§ a0~ _ 5., =0(Bestcase) ] is essentially independent
5 C d.p=-90 (Worstcase) 1 of the value of 9]3
20l 1/ * can provide an excellent
. 1 ] measurement of O, over
1oF 4 avery broad range of 0,
¥ 7 B Y Y T — Y T — 21.1 = (10-20° for sin?26,,~0.03-0.10;
True sin(2%:9) | gets a little worse for smaller 6,,)
(calculation includes backgrounds, background
uncertainties, and matter effects)
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P(v) / P(v) Asymme

JC

T2K: E=0.6GeV and L=295km

NOvA: E=2.3GeV and L=810km

<Py, => ve)> %

Dave Schmitz, Fermilab
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