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To India via Indiana 

Thank you to the 

organizers for 

adjusting the 

schedule so I could 

attend my sister’s 

wedding (54 hours 

and 7500 miles ago) 

and give this talk. 
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Outline 

• Goals and Strategies for Studies of (Quasi)-

Elastic Scattering at MINERvA 

• Scope of Our Initial Study 

• Reconstruction and Data Selection 

• Comparison with Simulations 

• Outlook 
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Goals for (Quasi)-Elastic 

Scattering at MINERvA 

• MINERvA was designed in large 

part to map out features of quasi-

elastic cross-sections at moderate 

energies across a wide range of Q2 

– Broad range of energies, target nuclei 
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Target LE νμ LE νμ Mass 

Scint. (CH) 58.0K 34.1K 6.4t 

Helium 2.6K 1.3K 0.25t 

Graphite (C) 1.5K 0.8K 0.17t 

Water (H2O) 3.2K 2.2K 0.4t 

Iron (Fe) 9.5K 4.3K 0.97t 

Lead 11.4K 3.7K 0.98t 

Fiducial CCQE Interactions/1.2E20 POT 

NuMI Beam MC, FLUKA 



(Q)E Measurements 

• Cross section                     for                   at low 

and moderate Q2.   

– Also model-independent  

– Do we see similar enhancements at low energy seen 

by K2K, BooNEs?  Agree with NOMAD at high energy? 

• High Q2            to extract axial form factors 

– Compare with vector form factors.  Dipole? 

• A-dependence of                   in nuclear targets 

•           for     , particularly when 

• NC elastic at moderate Q2  

 8 March 2011 
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MINERvA’s Prospects 

• To illustrate our aspirations, here are our design-

era simulation results for measurements with our 

full low energy data set. 

8 March 2011 K. McFarland, Quasi-Elastic @ MINERvA 6 

BooNEs NOMAD 



MINERvA’s Prospects 

• To illustrate our aspirations, here are our design-

era simulation results for measurements with our 

full low energy data set. 
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Statistical and resolution errors.  No flux error. 

BooNEs NOMAD 



Reconstruction Strategies 

One and 
Two-Track 
[SciBooNE, 
NOMAD] 

• Work to lowest 
pp and widest 
θp acceptance 

• Worse in 
passive targets 

Lepton and 
Michel veto 
[“MiniBooNE” 
or Super-K] 

• High energy 
will be 
challenging 

• Only for scint. 
target 

One or Two 
Tracks plus 
no recoil 
(calorimetric) 

• Today’s 
analysis from 
MINERvA 

• Many possible approaches to QE reconstruction 

– Experiments choose approaches best suited to detector and beam 

energy.  We hope to try all of these. 
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Technique 

 

 
MINERvA-

specific 

comments 



MINERvA’s Challenges 

• Dave Schmitz provided a detailed 

summary of MINERvA’s status 

– Increasing muon acceptance at low 

energy, will be critical for QEL 

• Backgrounds 

– Each technique will have different 

non-elastic contributions 

– Higher energies are more challenging 

• Flux uncertainties 

– See talk from Melissa Jerkins 

– We are pursuing techniques using 

neutrino interaction constraints and 

constraints independent of neutrinos 
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Z. Pavlovic, “A 

Measurement of Muon 

Neutrino Disappearance in 

the NuMI Beam,”  PhD 

Thesis, UT Austin 2008 



MINERvA’s First 

Quasi-Elastic Studies 
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Today’s Data Sample 

• MINERvA’s run to date 

– Accumulated 0.8E20 with 

partial “frozen” detector in anti-

neutrino mode 

– Accumulated 1.2E20 in 

neutrino and 1.3E20 in anti-

neutrino beam with full detector 

 

• This analysis is based on 

first half of partial detector 

anti-neutrinos in CH 

– About 10% of expected low 

energy anti-neutrinos 
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Full Detector 

“Frozen” 

Detector 
 





Sample Events 

• Muon is a long, penetrating track 

• Neutron may or may not appear in the detector 
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p n


 




Beam direction 

If elastic kinematics, 

Eν=2.8 GeV, Q2=0.1GeV2  

If elastic kinematics, 

Eν=2.5 GeV, Q2=0.3GeV2  

30 MeV deposited in 

single bar.  Neutron 

interaction candidate. 

View of detector 

from above 



Reconstruction and 

Data Selection 
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Muon Selection 

• Analysis requires momentum 

analyzed muon in MINOS 

spectrometer 

• Muon track must start in 

MINERvA detector 

• Simulation everywhere is 

GENIE 2.6.2 
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Inclusive μ+ 

originating in 

MINERvA, 

momentum 

analyzed in 

MINOS 

3 ton 

fiducial 

mass 



Recoil Selection 

• Look at energy in the detector, 

outside of a region very close to 

the track (5cm) 

– Reduces contribution from δ-rays 

• Form a  

calorimetric 

energy sum 

• As expected, 

elastic events 

dominate at 

low recoil 
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Recoil vs Q2 

• If the neutron interacts, 

may still see visible 

energy, particularly at 

high Q2 (neutron energy) 

 

• Our current selection 

varies with Q2 

• Another option would be 

to require low recoil, 

eliminating signal with 

interacting neutrons 
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Backgrounds after Recoil 
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• The current strategy is generous 

in keeping signal events, 

– at the price of leaving a significant 

background, particularly at high Q2. 

• This event illustrates two future 

background reduction techniques 

 

– Recoil energy  

near the track 

 

 

– Michel electron  

veto to remove π± 



Comparisons with 

Simulation 
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Technique for Comparison 

• Uncertainties shown are from two sources 

– Data statistics and Simulation Statistics 

• Simulation is approximately 2.5x the statistics of data 

– Flux uncertainties 

• These uncertainties and the techniques for reducing them will 

be discussed in Melissa Jerkins’ talk 

• Range from 7% at focusing peak to 16% at high energy 

– Other uncertainties (resolution, reconstruction 

efficiencies, material composition, etc.) not included 

• Will show absolutely normalized comparisons 

– Except in plots to demonstrate agreement in 

“nuisance” variables, such as spatial distributions 
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selected 

Event location @ vertex 
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0.4E20 POT, partial detector 



Muon location @ MINOS 

• Good agreement in spatial distributions across detectors 

gives us confidence in our muon acceptance modeling 
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Muons in Selected Events 

• Absolute normalization: protons + flux + cross-sections 

• Recoil cut leaves Quasi-Elastic sample largely 

untouched, but reduces backgrounds significantly 
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Low Recoil 
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
0.4E20 POT,  

partial detector 

Inclusive μ+ 



Efficiency of Reconstruction 

• Reconstruction efficiency for true 

(generator) Quasi-Elastic 

– Biggest is loss of low energy muons 

– Slow fall of efficiency at high Q2 
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Event Kinematics: Resolution 
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• For true (generator) Quasi-Elastic events, look at 

resolution of event kinematics 

• Derive neutrino  

energy and Q2  

from muon  

kinematics solely  

 



Event Kinematics 

• Reminder: absolute predictions from flux simulation, 

GENIE 2.6.2, MINERvA simulation 

• Event deficit is flat in Q2 and not flat in Eν 
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Outlook 
 

(Backdrop of beautiful vistas from much smaller hills) 
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Image © Barbie Marszalek 2009 

The MINERvA detector is functioning well: 

reconstructed muons, 

calorimetric recoil 

Sufficient to take a first look 

at Quasi-Elastic Scattering 
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Image © Barbie Marszalek 2009 

We have performed one 

(lonely) Quasi-Elastic analysis  

of many we plan for the future. 

 

Technique requires  

muon plus low recoil 

In the near future, will add 

proton reconstruction, lower 

energy muons, Michel veto.  

 

Cross-comparisons will help inform 

us about backgrounds 



8 March 2011 K. McFarland, Quasi-Elastic @ MINERvA 29 
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We’re looking forward 

to keeping this community 

involved in our long journey and 

welcome your comments and feedback. 



Acknowledgments 
(from Monday’s MINERvA talk by Dave Schmitz) 
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Backup Slides 
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Generator Details 

GENIE 2.6.2 (tagged ~Jan 2011) 

Details of nucleon cross-section 

General equation is Llewellwyn-Smith with lepton mass terms 

The pseudo-scalar form factor is from PCAC.    

Electromagnetic form factors are BBBA2005 (hep-ex/0602017)   

Axial form factor has a dipole form, and MA=0.99 GeV/c2. 

Nuclear effects  (for carbon) 

The nuclear model is a Fermi gas, with a high momentum component 

(Bodek and Ritchie, Phys.Rev. D23 (1981) 1070). 

Pauli blocking is applied by requiring the outgoing nucleon has 

momentum above the Fermi momentum, 221 MeV/c for carbon. 
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Event Kinematics 
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Relatively Normalized 

Q2 Distribution 
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Flux Uncertainty Detail 
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Elevation View 

coming this 

Spring 

5 m 2 m 

LHe 

0.25t 
2.14 m 

3.45 m 
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Full-Sized Detector Layout 
• Detector comprised of  120 “modules” stacked along the beam direction 

• Central region is finely segmented scintillator tracker  

• ~32k readout channels total 
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 Full detector installation 

completed in March, 2010 

 NuMI beamline in low-energy 

configuration 

 1.2e20 P.O.T. in neutrino mode 

 1.2e20 P.O.T. in antineutrino mode 

 Detector live-time > 98% 

Data Collected So Far 


