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Motivations

• New extremely intense neutrino beamlines are in operation or in being planed for the

precision measurements of the mass splitting and mixing angles and detailed experimental

study of neutrino mixing matrix.

• Neutrino beams cover the energy range from a few hundred MeV to several GeV. In

this regime, the dominant contribution to neutrino nucleus cross section comes from

quasi-elastic (QE) reactions and resonance production processes.

• The consideration of systematic uncertainties come to the first place. An important source

of systematic uncertainties is related to nuclear effects in neutrino interactions. The cross

section data in the relevant energy range are rather scarce and were taken on the targets,

which are not used in the neutrino oscillation experiments.

• A variety of Monte Carlo codes developed to simulate neutrino detector response are based

on the Relativistic Fermi Gas Model (RFGM). This model does not account a few important

effects: nuclear shell structure, final state interaction between the outgoing nucleon and

residual nucleus (FSI), and presence of strong nucleon-nucleon (NN) correlations.

• We study QE neutrino charged-current interactions within model:

(⋆) Relativistic Fermi Gas Model (RFGM)

(⋆) Plane-Wave Impulse Approximation (PWIA) - no final state interaction (FSI)

(⋆) FSI effects within Relativistic Distorted-Wave Impulse Approximation (RDWIA)
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Formalism of the quasi-elastic scattering

We consider lepton charged-current (CC) QE exclusive

l(ki) + A(pA) → l′(kf) +N(px) + B(pB),

and inclusive

l(ki) + A(pA) → l′(kf) +X

scattering off nuclei, where l is incident lepton (e/νµ), l
′ is scattered lepton (e/µ),

ki = (εi,ki) and kf = (εf ,kf) are initial and final lepton momenta, pA = (εA,pA), and

pB = (εB,pB) are the initial and final target momenta, px = (εx,px) is ejectile nucleon

momentum, q = (ω, q) is momentum transfer carried by the virtual photon (W-boson),

and Q2 = −q2 = q2 − ω2 is photon (W-boson) virtuality. m, mA and mB are masses

of nucleon, target and recoil nucleus, respectively. The missing energy and momentum are

defined by pm = px − q, εm = m+mB −mA
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A. QE lepton-nucleus cross section

A1. Exclusive reactions

Kinematic definitions for A(l, l′N)B reactions.
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In the lab frame the differential cross section for exclusive electron (σel) and (anti)neutrino

(σcc) CC scattering can be written as

d6σel

dεfdΩfdεxdΩx

=
|px|εx

(2π)3

εf

εi

α2

Q4
L

(el)
µν W

µν(el)

d6σcc

dεfdΩfdεxdΩx

=
|px|εx

(2π)5

|kf |

εi

G2 cos2 θc

2
L(cc)
µν Wµν(cc),

where Ωf is the solid angle for the lepton momentum, Ωx is the solid angle for the ejectile

nucleon momentum, α ≃ 1/137 is the fine-structure constant, G ≃ 1.16639 ×10−11

MeV−2 is the Fermi constant, θC is the Cabbibo angle (cos θC ≈ 0.9749).

The lepton tensor can be written as the sum of symmetric LµνS and antisymmetric LµνA tensors

Lµν = LµνS + LµνA

LµνS = 2
“

kµi k
ν
f + kνi k

µ
f − gµνkikf

”

L
µν
A = h2iǫ

µναβ
(ki)α(kf)β,

where h is +1 for positive lepton helicity and −1 for negative lepton helicity, ǫµναβ is the
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antisymmetric tensor For the scattering of unpolarized incident electrons Lµν(el) only has

symmetric part and (anti)neutrino tensor Lµν(cc) involves both, symmetric and antisymmetric

parts.

The electromagnetic and the weak CC hadronic tensors, W(el)
µν and W(cc)

µν , are given by

bilinear products of the transition matrix elements of the nuclear electromagnetic or CC

operator J (el)(cc)
µ between the initial nucleus state |A〉 and the final state |Bf〉 as

W(el)(cc)
µν =

X

f

〈Bf , px|J
(el)(cc)
µ |A〉〈A|J (el)(cc)†

ν |Bf , px〉δ(εA + ω − εx − εBf),

where the sum is taken over undetected states.

If only a single discrete state or narrow resonance of the target is excited it is possible to

integrate over the peak in missing energy and obtain a fivefold differential cross section of the

form

d5σel

dεfdΩfdΩx

= R
|px|ε̃x

(2π)3

εf

εi

α2

Q4
L(el)
µν W

µν(el)

d5σcc

dεfdΩfdΩx

= R
|px|ε̃x

(2π)5

|kf |

εi

G2 cos2 θc

2
L

(cc)
µν W

µν(cc)
,
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where R is a recoil factor

R =

Z

dεxδ(εx + εB − ω −mA) =

˛

˛

˛

˛

1 −
ε̃x

εB

px · pB

px · px

˛

˛

˛

˛

−1

,

ε̃x is solution to equation εx+εB−mA−ω = 0, where εB =
q

m2
B + p2

B, pB = q−px.

It is also useful to define a reduced cross section

σred =
d5σ

dεfdΩfdΩx

/KσlN,

where Kel = Rpxεx/(2π)3 and Kcc = Rpxεx/(2π)5 are phase-space factors for electron

and neutrino scattering, and σlN is corresponding elementary cross section for the lepton

scattering from moving free nucleon.
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A2. Hadronic tensor for exclusive reaction
A general structure of the hadronic tensor can be established basing on requirements of Lorentz
invariance, parity and time reversal symmetries. This tensor must be constructed from three
linearly independed four-vectors q, px, and pA, the scalars that can be constructed from them,
the second-rank metric tensor gµν, and completely antisymmetric tensor ǫµναβ. Generally,
due to the final state interaction effects the time reversal symmetry does not constraint the
form of the nuclear tensor for the exclusive reactions [A.Picklesimer et al. (1985) and (1987)],
For electron scattering (taking into account current and parity conservation)

Wµν(el) = W
µν(el)
S

+W
µν(el)
A

,

W
µν(el)
S = W

(el)
1 g̃

µν
+W

(el)
2 p̃

µ
xp̃
ν
x +W

(el)
3 p̃

µ
Ap̃

ν
A +W

(el)
4 (p̃

µ
xp̃
ν
A + p̃

ν
xp̃
µ
A),

W
µν(el)
A = W

(el)
5 (p̃

µ
xp̃
ν
A − p̃

ν
xp̃
µ
A),

where

g̃µν = gµν +
qµqν

Q2
,

p̃
µ
x = p

µ
x +

px · q

Q2
q
µ
,

p̃
µ
A

= p
µ
A

+
pA · q

Q2
qµ.

In the chosen coordinate system the result of contraction of the electron and nuclear response
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tensors reduces to the form

L(el)
µν W

µν(el)
S

= 4εiεf cos2
θ

2
(VLR

(el)
L

+ VTR
(el)
T

+ VLTR
(el)
LT

cosφ+ VTTR
(el)
TT

cos 2φ)

where
VL = Q4/q4,

VT =
Q2

2q2
+ tan

2 θ

2
,

VLT =
Q2

q2

 

Q2

q2
+ tan

2 θ

2

!

,

VTT =
Q2

2q2

are the electron coupling coefficients and

R
(el)
L = W

00(el)
,

R
(el)
T = W

xx(el)
+W

yy(el)
,

R
(el)
LT cosφ = −

“

W
0x(el)

+W
x0(el)

”

,

R
(el)
TT

cos 2φ = Wxx(el) −W yy(el)
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are four independ response functions.

In weak interactions the weak current and parity are not conserved. Therefore, a general

nuclear tensor can be written as

W µν(cc) = W µν
S +W µν

A ,

W
µν
S = W1g

µν
+W2q

µ
q
ν
+W3p

µ
xp

ν
x +W4p

µ
Ap

ν
A +W5(p

µ
xq

ν
+ p

ν
xq
µ
)

+W6(p
µ
Aq

ν
+ p

ν
Aq

µ
) +W7(p

µ
xp

ν
A + p

ν
xp

µ
A),

W µν
A = W8(p

µ
xq

ν − pνxq
µ) +W9(p

µ
Aq

ν − pνAq
µ) +W10(p

µ
xp

ν
A − pνxp

µ
A)

+W11ǫ
µντρ

qτpxρ +W12ǫ
µντρ

qτpAρ +W13ǫ
µντρ

pxτpAρ.

The result of contraction of the lepton and nuclear tensors can be written as

L(cc)
µν W

µν(cc) = LSµνW
µν
S + LAµνW

µν
A = 2εiεf{v0R0 + vTRT + vTTRTT cos 2φ+ vzzRzz

+ (vxzRxz − v0xR0x) cosφ− v0zR0z + h[vyz(R
′
yz sinφ+ Ryz cosφ)

− v0y(R
′
0y sinφ+ R0y cosφ) − vxyRxy]},
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where

v0 = 1 + β cos θ,

vT = 1 − β cos θ +
εiβ|kf | sin

2 θ

q2
,

vTT =
εiβ|kf | sin

2 θ

q2
,

v0z =
ω

|q|
(1 + β cos θ) +

m2
l

|q|εf
,

vzz = 1 + β cos θ − 2
εi|kf |β

q2
sin2 θ,

v0x = (εi + εf)
β sin θ

|q|
,

vxz =
β

q2
sin θ

h

(εi + εf)ω +m
2
l )
i

,

vxy =
εi + εf

|q|
(1 − β cos θ) −

m2
l

|q|εf
,

vyz = β
ω

|q|
sin θ,

v0y = β sin θ, β = |kf |/εf
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are neutrino coupling coefficients and

R0 = W
00
S ,

RT = W
xx
S +W

yy
S ,

RTT cos 2φ = W xx
S −W yy

S ,

R0z = W
0z
S +W

z0
S ,

Rzz = W zz
S ,

R0x cosφ = W
0x
S +W

x0
S ,

Rxz cosφ = W xz
S +W zx

S ,

Rxy = i (W
xy
A −W

yx
A ) ,

R′
yz sinφ+ Ryz cosφ = i (W yz

A −W zy
A ) ,

R′
0y sinφ+ R0y cosφ = i

“

W 0y
A −W y0

A

”

are ten independ response functions which describe the weak properties of hadronic system.
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In the absence of FSI effect (plane-wave limit) the time reversal symmetry of operators and

states provides an additional constraint on the Lorenz form of the antisymmetric part of

nuclear tensor. Then we have

W µν
A = W11ε

µντρqτpxρ +W12ǫ
µντρqτpAρ +W13ǫ

µντρpxτpAρ

and

L
(cc)
µν W

µν(cc)
= 2εiεf{v0R0 + vTRT + vTTRTT cos 2φ+ vzzRzz + (vxzRxz − v0xR0x) cosφ

− v0zR0z + h(vyzRyz cosφ− v0yR0y cosφ− vxyRxy)},

where

Ryz cosφ = i (W
yz
A −W

zy
A ) ,

R0y cosφ = i
“

W
0y
A −W

y0
A

”

.

Note that asymmetry, which is measured at azimuthal angles φ = π/2 and φ = −π/2,

vanishes in the absence of the FSI.
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The exclusive lepton scattering cross sections can be written in terms of response functions

as

d5σel

dεfdΩfdΩx

=
|px|ε̃x

(2π)3
σMR

`

VLR
(el)
L + VTR

(el)
T + VLTR

(el)
LT cosφ+ VTTR

(el)
TT cos 2φ

´

,

d5σcc

dεfdΩfdΩx

=
|px|ε̃x

(2π)5
G2 cos2 θcεf |kf |R

˘

v0R0 + vTRT + vTTRTT cos 2φ+ vzzRzz

+ (vxzRxz − v0xR0x) cosφ− v0zR0z + h
ˆ

vyz(R
′
yz sinφ+ Ryz cosφ)

− v0y(R
′
0y sinφ+ R0y cosφ) − vxyRxy

˜¯

,

where

σM =
α2 cos2 θ/2

4ε2
i sin4 θ/2

is the Mott cross section. The response functions Ri depend on the variables Q2, ω, |px|,

and θpq.
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A3. Inclusive reactions

In the inclusive reactions only the outgoing lepton is detected and the differential cross sections

can be written as

d2σel

dεfdΩf

=
εf

εi

α2

Q4
L

(el)
µν W

µν(el)
,

d2σcc

dεfdΩf

=
1

(2π)2

|kf |

εi

G2 cos2 θc

2
L(cc)
µν W

µν(cc)
,

where W
µν

is inclusive hadronic tensor.

For inclusive lepton scattering there are only two linearly independ four vectors q and pA.

The time reversal symmetry reduces the number of Lorenz structures in hadronic tensor and

we have

W
µν(el)

S = W
(el)

1 g̃µν +W
(el)

2 pµAp
ν
A +W

(el)

3 (qµpνA + qνpµA).

The result of contraction of the electron and nuclear tensors is given by

L(el)
µν W

µν(el)
= 4εiεf cos2 θ

2
(VLR

(el)
L + VTR

(el)
T ).
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The charged-current weak nuclear tensor for inclusive neutrino scattering can be written as

the sum

W
µν(cc)

= W
µν

S +W
µν

A ,

W
µν

S = W 1g
µν

+W 2q
µ
q
ν
+W 3p

µ
Ap

ν
A +W 4(p

µ
Aq

ν
+ p

ν
Aq

µ
),

W
µν

A = W 5ǫ
µντρqτpAρ

and the result of contraction of the neutrino and nuclear tensors is given by

L
(cc)
µν W

µν(cc)
= 2εiεf(v0R0 + vTRT + vzzRzz − v0zR0z − hvxyRxy).

Than the inclusive lepton scattering cross sections reduce to

d2σel

dεfdΩf

= σM
`

VLR
(el)
L + VTR

(el)
T

´

,

d2σcc

dεfdΩf

=
G2 cos2 θc

(2π)2
εf |kf |

`

v0R0 + vTRT + vzzRzz − v0zR0z − hvxyRxy

´

,

where the response functions now depend only on Q2 and ω.
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B. Nuclear current

We describe the lepton-nucleon scattering in the Impulse Approximation (IA), in which the

incoming lepton incoherently interacts with bound nucleon. The nuclear current is written as

the sum of single-nucleon currents. Then, the nuclear matrix element of the single-nucleon

current takes the form

〈p,B|J
µ
|A〉 =

Z

d
3
r exp(it · r)Ψ

(−)
(p, r)Γ

µ
Φ(r),

where Γµ is the vertex function, t = εBq/W is the recoil-corrected momentum transfer,

W =
p

(mA + ω)2 − q2 is the invariant mass, Φ and Ψ(−) are relativistic bound-state

and outgoing wave functions.
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B1. Vertex functions
The electromagnetic vertex function for a free nucleon can be represented by any of three
operators [T. de Forest (1983), C.R. Chinn et al (1992)]

Γµ = GM(Q2)γµ −
Pµ

2m
F

(el)
M

(Q2) (CC1),

Γ
µ

= F
(el)
V (Q

2
)γ
µ

+ iσ
µν qν

2m
F

(el)
M (Q

2
) (CC2),

Γµ =
Pµ

2m
F

(el)
V

(Q2) + iσµν
qν

2m
GM(Q2) (CC3),

which are related by the Gordon identity. Here σµν = i[γµγν]/2, P = pm + px, F
(el)
V

and F
(el)
M are the Dirac and Pauli nucleon form factors. For electron scattering off nuclei,

most calculations use the CC2 electromagnetic vertex function. Because the bound nucleons

are off shell, the vertex Γµ should be extrapolated to off-shell region. To this end we employ

de Forest prescription

Γ̃
µ

= F
(el)
V (Q

2
)γ

µ
+ iσ

µν q̃ν

2m
F

(el)
M (Q

2
),

where q̃ = (εx− Ẽ, q) and the nucleon energy Ẽ =
p

m2 + (px − q)2 is placed on shell.

We use the MMD approximation [P.Mergell et al (1996)] of the nucleon form factors. The

Coulomb gauge is assumed for the single-nucleon current, i.e. J3 = (ω/q)J0.
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The single-nucleon charged current has V−A structure Jµ(cc) = JµV + JµA. For a free

nucleon vertex function Γµ(cc) = ΓµV + ΓµA we use CC2 vector current vertex function

Γ
µ
V = FV (Q

2
)γ

µ
+ iσ

µν qν

2m
FM(Q

2
)

and the axial current vertex function

ΓµA = FA(Q2)γµγ5 + FP(Q2)qµγ5.

Weak vector form factors FV and FM are related to corresponding electromagnetic ones for

proton F
(el)
i,p and neutron F

(el)
i,n by the hypothesis of conserved vector current (CVC)

Fi = F
(el)
i,p − F

(el)
i,n .

The axial FA and psevdoscalar FP form factors in the dipole approximation are parameterized

as

FA(Q2) =
FA(0)

(1 +Q2/M2
A)2

, FP(Q2) =
2mFA(Q2)

m2
π +Q2

,

where FA(0) = 1.267, mπ is the pion mass, and MA ≃ 1.032 GeV is the axial mass.

We use de Forest prescription for off-shell extrapolation of Γµ(cc). Similar to electromagnetic

current, Coulomb gauge is applied for the vector current JV .
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Model

In Independ Particle Shell Model (IPSM) the model space for 16O(e, e′N)

consists of 1s1/2, 1p3/2, and 1p1/2 nucleon-hole states in 15N and 15O nuclei,

for total of 6 states. The 1s1/2 state is regarded as a discrete state.

Shell occupancy:

S(P1/2)=0.7

S(P3/2)=0.66

S(S1/2)=1

Average occupancy of nuclear shells S=0.75

(supported by recent JLab measurement)

Missing Energy

Neutron: Em(1p1/2)=15.7 MeV, Em(1p3/2)=21.2 MeV, Em(1s1/2)=42.9 MeV

Proton: Em(1p1/2)=12.1 MeV, Em(1p3/2)=18.4 MeV, Em(1s1/2)=40.1 MeV
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In our calculation of the hadron tensor we use relativistic distorted-wave impulse approximation

(RDWIA), plane-wave impulse approximation (PWIA) and the Fermi gas model.

A. RDWIA

We can write the matrix elements of the current
operator for single-nucleon knockout leaving
the residual nucleus in asymptotic channel α
as follows

〈p,Bα|J
µ|A〉 =

X

βγmbm
′
b

cβγ

Z

d3r exp(it · r)〈ψ̄
(−)
αβ

|rmb〉

×〈rmb|Γ̃
µ|rm′

b〉〈rm
′
b|φβγ〉,

where cβγ is a parentage coefficient,

– Typeset by FoilTEX – 21



Butkevich and Kulagin Quasi-elastic neutrino

〈rmb|Γ̃
µ

λλ′
|rm′

b〉 is a 2 × 2 spin matrix,

〈rm
′
b|φβγ〉 =

0

@

Fβγm′
b
(r)

iGβγm′
b
(r)

1

A

is the bound state overlap wave function and

〈ψ̄
(−)
αβ

|rmb〉 = Nα

0

@

χ
(−)∗
αβmb(r)

−iζ
(−)∗
αβmb(r)

1

A

is the Dirac adjoint of time-reversed distorted waves.

To describe the bound nucleon states we use relativistic shell model waves functions, obtained

as the self-consistent (Hartree) solutions of a Dirac equation, derived within a relativistic

mean field approach, from Lagrangian containing σ, ω and ρ mesons.
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The upper and lower radial wave functions in partial-wave expansion for bound-state wave

functions satisfy the usual coupled differential equations

„

d

dr
+
κγ + 1

r

«

Fβγ(r) =
ˆ

Eγ +m+ Sγ(r) − Vγ(r)
˜

Gβγ(r),

„

d

dr
−
κγ + 1

r

«

Gβγ(r) =
ˆ

− Eγ +m+ Sγ(r) + Vγ(r)
˜

Fβγ(r),

where Sγ and Vγ are spherical scalar and vector potentials, jγ = |κγ| − 1/2 is the total

angular momentum. The missing momentum distribution is determined by the wave functions

in momentum space

Pβ(pm) =
|cβ|

2

2π2

“

|F̃β(pm)|
2
+ |G̃β(pm)|

2
”

.

In this work NLSH bound-nucleon wave function [M.M. Sharma et al (1993)] are used in

numerical analysis with normalization factors Sα = |cα|
2 relative to full occupancy of 16O:

S(1p3/2) = 0.66, S(1p1/2) = 0.7 [K.G. Fissum et al (2004) (JLab)] and S(1s1/2) = 1.
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Momentum distribution for the NLSH

models. The NLSH wave functions

predict binding energies, single-

particle energies, and a charge radius

for 16O which are all in good

agreement with the data.
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The distorted wave functions are evaluated using a relativized Schrödinger equation for upper

components of Dirac wave functions. For simplicity let consider a single-channel Dirac

equation

[α · p + β(m + S)]ψ = (E − V )ψ,

where

ψ(r) =

„

ψ+(r)

ψ−(r)

«

is the four-component Dirac spinor. Using the direct Pauli reduction method [J.Udias et

al (1995), M.Hedayati-Poor et al (1995)] the system of two coupled first-order radial Dirac

equations can be reduced to a single second-order equation
h

∇
2
+ k

2
− 2µ

“

U
C

+ U
LS

L · σ
”i

ξ = 0,

where ξ is a two-component Pauli spinor. Here k is the relativistic wave number, µ is the

reduced mass of the scattering state,

– Typeset by FoilTEX – 25



Butkevich and Kulagin Quasi-elastic neutrino

and

UC =
E

µ

»

V +
m

E
S +

S2 − V 2

2E

–

+ UD,

U
D

=
1

2µ

»

−
1

2r2D

d

dr

`

r
2
D

′´
+

3

4

„

D′

D

«2–

,

ULS = −
1

2µr

D′

D
,

D = 1 +
S − V

E +m
.

D(r) is known as the Darwin nonlocality factor and UC and ULS are the central and
spin-orbit potentials. The upper and lower components of the Dirac wave functions are then
obtained using

ψ+ = D1/2ξ,

ψ− =
σ · p

E +m+ S − V
ψ+

We use the LEA program [J.J. Kelly (1995)] for numerical calculation of the distorted wave

functions with EDAD1 SV relativistic optical potential [E. Cooper (1993)].
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B. PWIA

In the PWIA the final state interaction between

the outgoing nucleon and the residual nucleus

is neglected. In nonrelativistic PWIA the

knockout cross section has a factorized form

d5σ

dεfdΩfdΩx
= KσexP (E,p)

where

Kel = R
pxεx

(2π)3
, Kcc = R

pxεx

(2π)5

are the phase-space factors, R is recoil

factor, σex is the half-off-shell cross section

for scattering of a lepton by moving nucleon.
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The nuclear spectral function P can be written as

P (E,p) =
X

f

˛

˛

˛〈Bf |a(p)|A〉
˛

˛

˛

2
δ(E − εm).

and represents the probability of removing a nucleon with momentum p and energyE from the

nuclear target A and leaving the residual nucleus B in the state Bf , εm = m+mBf
−mA,

where mBf
and mA are the nuclear masses in the corresponding states.

In the nuclear shell model the momentum distribution Pβ(p) for an orbit β is related to the

upper component of the corresponded bound-state wave function as

Pβ(p) =
c2β

2π2

˛

˛

˛F̃β(p)
˛

˛

˛

2

and normalized to an occupancy number of the orbit, such that
Z

d3pPβ(p) = |cβ|
2.
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C. Fermi gas model

In the RFGM the nucleons are described as a system of quasi-free nucleons. This model

takes into account the Fermi motion of bound nucleon, Pauli blocking factor and relativistic

kinematics. The Fermi gas model provides a simplest form of the spectral function which is

given by

PFG(E, |p|) =
3

4πp3
F

Θ(pF − |p|)Θ(|p + q| − pF) × δ[(p2 +m2)1/2 − ε− E],

where pF is the Fermi momentum and ε is effective binding energy, introduced to account

of nuclear binding. For oxygen we use pF=250 MeV/c and ε=27 MeV.

The RFGM does not account nuclear shell structure, FSI effect, and the presence of NN-

correlations.
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D. Inclusive and total cross sections

In order to calculate inclusive and total cross sections, we use the approach, in which only

the real part of the optical potential EDAD1 is included because a complex optical potential

produces adsorbtion of flux. Then the contribution of the 1p- and 1s-states to the inclusive

cross section can be obtained as follows:
„

d3σ

dεfdΩf

«

RDWIA

=

Z 2π

0
dφ

Z pmax

pmin

dpm
pm

px|q|
Rc ×

„

d5σ

dεfdΩfdΩx

«

RDWIA
,

where pm = |pm|, px = |px|, pm = px − q, and

cos θpq =
p2
x + q2 − p2

m

2px|q|
,

Rc = 1 +
εx

2p2
xεB

(p
2
x + q

2
− p

2
m).

The effect of the FSI on the inclusive cross section can be evaluated using the ratio

Λ(εf ,Ωf) =

„

d3σ

dεfdΩf

«

RDWIA

ffi„

d3σ

dεfdΩf

«

PWIA

,

where
“

d3σ/dεfdΩf

”

PWIA
is the result obtained in the PWIA.
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D1. NN-correlations contribution

• According to JLab data [K. Fissum (2004)] the occupancy of the IPSM orbitals of 16O is

approximately 75% on average. We assume that the missing strength can be attributed

to the short-range NN-correlations in the ground state.

• We consider a phenomenological model which incorporates high-energy and high-

momentum component PHM due to NN-correlations [C.Ciofi degli Atti et al (1996),

S.Kulagin et al (2006)].

• In our calculations the spectral function PHM incorporates 25% of the total normalization

of the spectral function.
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Momentum distribution for the

NLSH models and hight-momentum

component of the NN-corelations.

The occupancy of the orbitals of 16O

is 75% on average and the spectral

function PHM incorporates 25% of

the total normalization of the spectral

function.
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• The FSI effect for the high-momentum component is estimated by scaling the PWIA result

(d3σ/dεfdΩf)HM with Λ(εf ,Ωf) function. Then the total inclusive cross section can

be written as

d3σ

dεfdΩf

=

„

d3σ

dεfdΩf

«

RDWIA

+ Λ(εf ,Ωf)

„

d3σ

dεfdΩf

«

HM

.

• The LEA code for nucleon knockout by electron scattering was adopted in this work

for neutrino interactions. This code was successfully tested against A(e, e′p) data [J.J.

Kelly(2005), J.Gao(200), K. Fissum (2004)]
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Results

Measured differential exclusive cross-

section data for the removal of

protons from 1p-shell of 16O as a

function of missing momentum . The

upper panels show JLab data for

electron beam energy Ebeam=2.442

GeV, proton kinetic energy Tp=427

MeV, and Q2=0.8 GeV2. The

lower panels show Saclay data for

Ebeam=580 MeV, Tp=160 MeV, and

Q2=0.3 GeV2. The solid line is

the RDWIA calculation while the

dashed-dotted and dashed lines are

respectively the PWIA and RFGM

calculations. Negative values of pm
correspond to φ = π and positive

ones to φ = 0.
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Measured reduced exclusive cross-

section data for the removal of

protons from 1p-shell of 16O as a

function of missing momentum. The

upper panels show Saclay data for

electron beam energy Ebeam=500

MeV, proton kinetic energy Tp=100

MeV, and Q2=0.3 GeV2. The

lower panels show NIKHEF data for

Ebeam=521 MeV, Tp=96 MeV, Q2

is varied. The solid line is the RDWIA

calculation while the dashed-dotted

and dashed lines are respectively the

PWIA and RFGM calculations.

The RFGM predictions are completely

off of the exclusive data.
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Comparison of the RDWIA electron,

neutrino and antineutrino reduced

cross sections for the removal of

nucleons from 1p-shell of 16O for

Saclay (upper panels) and NIKHEF

(lower panels) kinematic as functions

of pm. The solid line is electron

while the dashed and dashed-dotted

lines are respectively neutrino and

antineutrino cross sections.

At the maximum electron cross

section are higher (less than 10%)

than (anti)neutrino ones.
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Comparison of the RDWIA and

the RFGM calculations for electron,

neutrino and antineutrino reduced

and differential results for the removal

of nucleons from 1p- and 1s-shells

of 16O. The dashed-dotted line is

the RDWIA calculation for electron

scattering while the dashed and

dotted lines are respectively for

neutrino and antineutrino scattering.

The solid line on the left panels

shows the RFGM result while the

solid and dashed lines on the right

panels are respectively neutrino and

antineutrino cross sections calculated

in the Fermi gas model. The dashed-

dotted and dotted lines on right

panels are respectively neutrino and

antineutrino cross sections calculated

in the RDWIA.
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General inclusive spectrum

at fixed Q2.
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Inclusive cross section versus the

energy transfer ω or invariant mass

W (lower-right panel) for electron

scattering on 16O. The data are from

SLAC (filled circles) and Frascati

filled triangles). SLAC data are for

electron beam energy Ee=540, 730

MeV and scattering angle θ=37.1◦.

Frascati data are for Ee=540 MeV

and θ=37.1◦, Ee=700, 880 MeV

and θ=32◦. The solid line is

the RDWIA calculation while the

dotted and dashed-dotted lines are

respectively the PWIA and RFGM

calculations. The dashed line is the

cross section calculated in the RDWIA

with complex optical potential.
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Inclusive cross section versus the

energy transfer ω or invariant

mass W (lower panel) for electron

scattering on 16O. The data are from

Frascati for electron beam energy

Ee=1080, 1200, and 1500 MeV and

scattering angle θ=32.◦. The solid

line is the RDWIA calculation while

the dotted and dashed-dotted lines

are respectively the PWIA and RFGM

calculations. The dashed line is the

cross section calculated in the RDWIA

with a complex optical potential.
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Differences between calculated and

measured values of the inclusive cross

sections at maximum as a function of

three-momentum transfer.

Note that: Q2 = q2 − ω2
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Inclusive cross section versus the

muon energy for neutrino scattering

on 16O and for the four values of

incoming neutrino energy: Eν=0.3,

0.5, 0.7 and 1 GeV. The solid line

is the RDWIA calculation while the

dotted and dashed-dotted lines are

respectively the PWIA and RFGM

calculations. The dashed line is the

cross section calculated in the RDWIA

with complex optical potential.
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Inclusive cross section versus the

muon energy for antineutrino

scattering on 16O and for the four

values of incoming neutrino energy:

Eν=0.3, 0.5, 0.7 and 1 GeV. The

solid line is the RDWIA calculation

while the dotted and dashed lines

are respectively the PWIA and RFGM

calculations. The dashed line is the

cross section calculated in the RDWIA

with complex optical potential.
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Total cross section for the CC QE

scattering of muon neutrino on 16O

as a function of the incoming neutrino

energy. The RDWIA results with the

real part of optical potential (upper

panel) and complex optical potential

(lower panel) are shown together

with calculations from [C.Maieron

et al (2003)] (dashed-dotted line)

and [A.Meucci et al (2003)] (dashed

line). The solid and dotted lines are

respectively results obtained in this

work with and without contribution

of the high-momentum component.

For comparison, also shown are the

data from ANL and BNL for the D2

target.
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Total cross section for CC QE

scattering of muon neutrino (upper

panel) and antineutrino (lower panel)

on 16O as a function of incoming

(anti)neutrino energy. The solid

and dashed lines are respectively

the RDWIA results with the real

and complex optical potential. The

dashed-dotted and dotted lines are

respectively the RFGM and PWIA

results. Data points for different

targets are from ANL, BNL, and GGM
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Summary

QE CC ν(ν̄)16O cross sections were studied in different approaches.

• In RDWIA the reduced exclusive cross sections for ν(ν̄) scattering are similar to those of

electron scattering and in a good agreement with data.

• The inclusive and total cross sections were calculated neglecting the imaginary part of

relativistic optical potential and taking into account the effect of NN-correlations in the

target ground state and tested against 16O(e, e′) scattering data.

• FSI effect reduces the total cross section for about 30% for Eν = 200 MeV compared to

PWIA and decreases with neutrino energy down to 10% at 1 GeV.

• Effect of NN-correlations futher reduces the total cross section for about 15% for

Eν = 200 MeV. This effect also decreases with neutrino energy, down to 8% at 1

GeV.
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• The Fermi gas model was tested against e16O data:

(⋆) In the peak region RFGM overestimates the value of inclusive cross section at low

momentum transfer (|q| < 500 MeV/c). The discrepancy with data is about 20% at

|q| = 300 MeV/c and decreases as momentum transfer increases.

(⋆) RFGM fails completely when compared to exclusive cross section data.

• For total neutrino cross sections RFGM result is about 15% higher than the RDWIA

predictions at Eν ∼ 1 GeV.

• Our results show that nuclear-model dependence of the inclusive and total cross sections

weakens with neutrino energy but still remains significant for energy Eν . 1 GeV.
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